Overcoming Design Waste with Clear Visualization of Green Infrastructure Design

Presenter

Zach Sample, PE Green Infrastructure Design Products Manager XP Solutions

Ashley Francis, PE, CFM

Project Manager

LJA Engineering, Inc.

XP Solutions has a long history of ...

- Providing original, high-performing software solutions
- Leading the industry in customer service and support
- Educating our customers to be more successful in their

Agenda

- Overview of conventional Green Infrastructure design
- 'Gaps' in conventional practices
- Solutions by focusing on Clear Visualization of design
- Clear Visualization Solution Case Study with xpdrainage

Sustainable Drainage Practices

Low Impact Development (LID)

Green Infrastructure (GI)

Stormwater Controls (SWC) (Individual LID/GI facilities)

Conventional GI design

'Water Quality'... only Volume focused!

- Hydrology 'First Flush' or WQv/Wqe
- Pollutant concentrations ignored
- Facility design requirements:
 - Retain WQv
 - Bypass or attenuate 2-100yr ARI
 - Rational Eq and Manning's Eq
- **All calculated by hand or assisted by spreadsheet**

Design 'Gaps'

- 1. Facility design disconnected from site planning/design
- 2. Design procedures dependent on simplified catchment delineation

3. SWCs designed independently

Design 'Gaps'

1. Facility design is disconnected from site planning/design

Effects of Design 'Gaps'

Facility design disconnected from site planning/design

- Designed facilities 'Don't Fit' proposed site
- Setting vertical elevations tedious/changes
- Who created/understands spreadsheet/tools?
- Design 'Reactively'
- Constructability jeopardized
- Leads to unnecessary design iterations

Clear Visualization Solutions

Facility design is disconnected from site planning/design

- Load background data in order to visualize SWC on plan
- Drawn to scale, on site/plan, SWC facilities
- Automatically sampled elevations, length
- Profile treatment trains
- Inter-watershed impacts between different SWCs
- More confidence that the system will 'work'
- Reduce design iterations + save site area = save \$\$

Design 'Gaps'

2. Design procedures dependent on simplified catchment delineation

Effects of Design 'Gaps'

Design procedures dependent on simplified catchment delineation

- Typically poor understanding of true overland flow paths
- What if more than one catchment?

Clear Visualization Solutions

Design procedures dependent on simplified catchment delineation

- Fast/Easy 2D 'Deluge'
- Treatment train approach

Design 'Gaps'

3. SWCs designed independently, even if part of a complex treatment train plan

₹	Water Quality S	wale	
		Last Modified:	10/12/201
SUBJECT			
PROJECT NO.	RY	DATE	
PROJECT NO.	CHECKED	DATE	
Swale Character			
Input	Description		Value
V	Max Velocity		2/t/s
A	Impervious area		17,000 ±2
S	Slope of channel (0.005 ft/ft minimum)		0.080 ft/ft
Y	Assumed water depth to begin analysis (0	1.5 ft max)	0.50 ±
n	Roughness factor	1 Grass	0.24
В	Swale width at base		2 /t
Z	Side Slopes		4 H:1V
t	Minimum treatment time (min)		9.0 min
Water Quality Flo	w (Q _{wq})		
Output	Description		Value
vol	Water quality volume		510 ±3
Q	Flow		0.04 cfs
Y	Depth of water		0.06 ±
W	Width of water surface in smale		2.49 ft
V	Velocity		0.26 t/s
L	Length of swale		137.7 ft

Effects of Design 'Gaps'

SWCs designed independently, even if part of a complex treatment train plan

- Designing SWC for WQv, bypass rest of flow
- How is 'bypass' conveyance calculated (i.e. pipe sizing)
- If 'multiple use' facility???
- Inefficient on multiple tools

Clear Visualization Solutions

SWCs designed independently, even if part of a complex treatment train plan

 Using a single fully encompassing tool

Clear Visualization - Design Tenets

Drainage dictates or influences all other project aspects

- Always work 'live' on project data (CAD, GIS, Surface..)
- Communicate drainage plan to greater team <u>instantly</u>
- Sell yourself Sell your solution
- Never ignore complexity!
- Seriously always assess what is being proposed!

xpdrainage Workflow

Calculate predevelopment

- Runoff and WQv
- Pollutant washoff

Estimate volumes

- Flow control
- Pollution control

Connect

- Stormwater controls
- Treatment train

Add Stormwater Control 7

Pre/post development flows and pollution removal

Modify

Case Study

Mater Planned Community - LJA Engineering

West Central Montgomery, TX

- Total Project: (967 acres)
- Case study portion of Phase 1: (157 Acres-BLUE)
- Masterplan developed alongside existing golf courses

Purpose: Develop and improve a residential site with no adverse hydrological impact

- Develop and improve a residential site with no adverse hydrological impact
- Mitigate developed condition runoff rates to predeveloped levels for 25 and 100 year ARI events
- Reduce pollutant runoff through distributed Green Infrastructure
- Reduce size of detention facility
- Assess viability of Green Infrastructure compared to traditional

Methodology

- Preliminary flow assessment
 - Rational Method
 - Pipe Sizing estimate
- Existing Runoff Plan
- Typical drainage plan
- LID based plan

Rational Assessment and Pipe Sizing

- Runoff Coefficient (C) and Tc
 - Developed and 'effective Green' scenarios assessed
 - C values decreased and Tc values increased between scenarios
- Pipe Sizing
 - Based on Rational flows and Mannings Eq.
 - Reduction in required pipe sizes shown for the 'effective Green' scenario

Pipe sizing

Pipe Full Velocity (ft/s)	Capacity (ft³/s)	Flow (ft³/s)
8.02	56.702	48.645
8.39	80.737	59.764
10.27	98.822	58.869
6.57	471.893	49.175

Existing Runoff Plan

- Based on 'park' landuses
- 'Deluge' based catchments

S: ARI: WQe: I	ype III: 3.8 in : Increase	Rainfall (%): +0	
Phase Name	Max Outflow (ft³/s)		
Existing	48.70005		
Phase Name	Max Outflow (ft³/s)	ease Rainfall (%): +0	
	Max Outflow (ft³/s) 120.85302		
Existing			
Existing CS: ARI: 100 year	120.85302		

Typical Drainage Plan

- Rational Sized pipe network
- Eastern 'Trunk' system to be attenuated by basin
- Western 'valley' to leave site untreated

Typical Drainage Plan

- Pond: 6.7 acres
- Two outfall pipes
- High flow weir

Typical Drainage Plan

Distributed Green Infrastructure Plan

'lumped' Raingarden for each neighborhood catchment

-407	Тур	ical Bioretention						(
Ni	me	Typical Bioretection						
		Dimensions	Filtration Layers	Inlet	s	Outlets	Advanced	Pollution
1								
	Pon	ding Area				Filter Area		
	0	Exceedence Level (ft)	218.0	Freeboard (in)	6.0	Base Level (ft)	213.0	
	0	Depth (ft)	2.0	Length (ft)	353.6	Under Drain		
	0	Base Level (ft)	216.0	Slope (ft/ft)	0.00	Height Above Ba	ase (ft) 0.0	
	0	Top Area (ft²)	13525.6			Diameter (in)	0.0	
	0	Side Slope (ft/ft)	0.50			No. of Barrels	0	
	0	Base Area (ft²)	10697.1			Manning's n	0.000	
Ш						Release Height	(ft) 0.0	

- 1.2 acres smaller!
- Single outfall pipe
- No Freeboard issues

Phase Name	Max Outflow (ft³/s)		
Existing	48.70005		
Developed	35.05776		
LID	5.66699		
Existing	120.85302		
	120.85302 89.24629		
Developed			
	89.24629 71.23745 ars: Type III: 12.17 in : In	crease Rainfall (%): +0	
Developed LID CS: ARI: 100 yea	89.24629 71.23745 ars: Type III: 12.17 in : In	crease Rainfall (%): +0	_
Developed LID CS: ARI: 100 year Phase Name Existing	89.24629 71.23745 ars: Type III: 12.17 in : In Max Outflow (R ² /s)	crease Rainfall (%): +0	_
Developed LID CS: ARI: 100 year	89.24629 71.23745 ars: Type III: 12.17 in : In	icrease Rainfall (%): +0	_

What was learned, next steps..

- Case study 'detailed' schematic design process
- Refinement of Green scenario
- Alternative LID systems possible
- Drag/drop drainage and LID elements (time saver)
- Automated elevation data (time saver)
- One approachable, quick tool replaced workflow using SIX other programs to juggle same work

Questions? Comments?

Thank you for joining this presentation,

Overcoming Design Waste with Clear Visualization of Green Infrastructure Design

Zach Sample Zach.Sample@xpsolutions.com

Contact XP Solutions

Americas: +1 888 554 5022 amsales@xpsolutions.com Asia Pacific: +61 7 3310 2302 ausales@xpsolutions.com EMEA: +44 0 1635 582555 uksales@xpsolutions.com

www.xpsolutions.com